
Dougherty Valley HS Chemistry Equilibrium – Equilibrium of CO₂ Lab Activity

Worksheet #	£8
-------------	----

Name:		Period:	Seat#:
Club soda (carbonated water) is a s	olution of CO ₂ in water		
,			
The equilibria involved are:	$CO_2(aq) + heat \leftrightarrow CO_2(g)$		
	H_2CO_3 (aq) \leftrightarrow CO_2 (aq) + H_2O (I) carbonic acid		
Universal indicator is greenish close	to pH 7, is yellow/orange near pH	5-6, and is reddish	near pH 4.
 Add a big squirt of universal Collect a few bits of dry ice for 	nd place them on a white piece of indicator to each beaker. rom the front of the classroom and a dry ice to keep the it vigorously be	place some in each	n of the
Question #1 - Why do the solutions	•		
Be specific and mention theBe sure to discuss Le Chate	exact color it changes to and why t	his makes sense.	
 You must mention BOTH eq 			
<u>Steps</u>			
Remove any pieces of dry ic			
2. Heat (DO NOT boil) one bea	ker containing solution on a hot pla	ate for 2 to 3 minute	es.
 Question #2 - Why does the solution Be specific and mention the You must mention BOTH eq 	color it changes to.		

Steps

1. Draw about 15ml of cool *(unheated)* solution from the <u>larger</u> beaker into the syringe. One beaker should still be empty for the end of the lab!

- 2. Place a syringe cap over the end of the syringe, pull the plunger out until you can lock it with a nail.
- 3. Hold the locked syringe upside down (pointy end facing up). Bubbles of carbon dioxide should be seen out-gassing. You can shake the syringe to speed this up.
- 4. After about 30 sec remove the syringe cap and push the plunger to expel the gas but not the solution.
- 5. Stopper the syringe again and repeat the above cycle one or two more times.
- 6. Empty the solution into an **empty** beaker and note its color.

Question #3 - Did the solution become more or less acidic as the pressure was reduced? How do you know?

Circl	e your ansv	ver
more acidic	<u>or</u>	less acidic

Question #4 - Fill in the statements below based on your observations.

• The two statements should not be the same, but should express the same idea.

<u>C</u>	ircle your answe	r		<u>Circle</u> your answer			
Higher	<u>or</u>	Lower	pressure favors	More	<u>or</u>	Fewer	moles of a gas

Or another way to express this would be:

Question #5 - Why is it a good idea to keep club soda cold? Explain.

•	Be sure to discuss Le Chatelier's principal.

Question #6 – What would the equilibrium expression for the decomposition of carbonic acid be?

<u>Question #7</u> – If Keq = $2x10^{-3}$ for the decomposition of H_2CO_3 at 25°C, which direction should the equilibrium shift if you started with $[H_2CO_3] = 3.1x10^{-3}$ M and $[CO_2] = 1.2x10^{-5}$ M? Justify by showing a calculation.

<u>Question #8</u> – Which color would you expect the solution to lie closer to if using Universal Indicator – the green side or the red side of the range? Explain your answer.